Author(s): Jorge Sandoval; Cristian Escauriaza; Anuel Mignot; Luca Mao
Linked Author(s): Jorge Sandoval
Keywords: No Keywords
Abstract: In this work, the turbulent flow dynamics and mass transport mechanisms in a natural SSZis analyzed. The study site is a river reach of the Lluta River, located in northern Chile in a high-altitude Andean environment known as the Altiplanosurements and 3D numerical simulations. The detailed topography was measured through DGPS and digital image processing while the surface velocity field, through the LSPIV technique. Regarding the field data, numerical simulations were performed using a DES turbulence model coupled with a 3D passive scalar transport model for Re=45,800. The coherent structure dynamics in the shear layer was identified as the main mechanism that drives the mass and momentum transport processes between the SSZ and the main channel. Also, the 2D vortical structures of the mean flow are analyzed within the lateral cavity, since they have a strong influence in mass transport, increasing mean residence times due to their lower velocities and longer exchange timescales. Finally, the performance of two simplified transport models is analyzed to represent the mass transport dynamics at larger scales.
DOI: https://doi.org/10.1051/e3sconf/20184005064
Year: 2018