Author(s): Kun Yan; Min-Zhi Yang
Linked Author(s):
Keywords: No keywords
Abstract: In order to solve the problem of precision of water demand forecast model, a coupled water demand forecast model of particle swarm optimization (PSO) algorithm and least squares support vector machine (LS-SVM) are proposed in this paper. A PSO-LSSVM model based on parameter optimization was constructed in a coastal area of Binhai, Jiangsu Province, and the total water demand in 2009 and 2010 were simulated and forecasted with the absolute value of the relative errors less than 2.1%. The results showed that the model had good simulation effect and strong generalization performance, and can be widely used to solve the problem of small- sample, nonlinear and high dimensional water demand forecast.
DOI: https://doi.org/10.1051/matecconf/201824601029
Year: 2018