Author(s): Zujian Zou; Yubin He
Linked Author(s):
Keywords: No keywords
Abstract: The Dadu River Basin is located in the transitional zone between the Qinghai-Tibet Plateau and the Sichuan Basin. It is alternately affected by various weather systems such as the western Pacific subtropical high, the Qinghai-Tibet high (anti-cyclone), the southwest warm and humid air current, and the southeast monsoon. The western Pacific subtropical high is one of the main influencing factors of rainfall runoff in the basin. During the El Niño period, the western Pacific subtropical high moved eastward and the position was southward. The warm and humid airflow and the southeast monsoon northward changed, and the rainfall runoff in the Dadu River Basin changed.By analyzing the development of the El Niño phenomenon, Divide an El Niño process into different stages of occurrence, development, and end. Combining the characteristics of the Dadu River runoff in each stage, Studying the runoff situation of the Dadu River Basin under different strengths and weaknesses of the El Niño phenomenon. Using the correlation method to establish a model of the relationship between the abundance of the Dadu River Basin and the El Niño strength and weakness. Providing new ideas and new methods for the accurate prediction of the incoming water of the Dadu River under the abnormal climatic conditions of El Niño. It provides technical support for reservoir dispatching, flood control dispatching and economic dispatching of cascade hydropower stations, and provides experience for other river basins to cope with complex climate situations and improve water regime forecasting levels.
DOI: https://doi.org/10.1051/matecconf/201824601074
Year: 2018