DONATE

IAHR Document Library


« Back to Library Homepage « Proceedings of the 1st International Symposium on Water Syst...

The Long-Term Projection of Surface Runoff in the Regions Above Danjiangkou in Hanjiang River Basin Based on Water-Energy Balance

Author(s): Jun Yin; Zhe Yuan; Run Wang

Linked Author(s):

Keywords: No keywords

Abstract: The projection of surface runoff in the context of climate change is important to the rational utilization and distribution of water resources. This study did a case study in regions above Danjiangkou in Hanjiang River Basin. A basin scale hydrological model was built based on macroscale processes of surface runoff and water-energy balance. This model can describe the quantity relationship among climatic factors, underlying surface and surface runoff. Driven by hypothetical climatic scenarios and climate change dataset coming from CMIP5, the climate change impacts on surface runoff in the regions above Danjiangkou in Hanjiang River Basin can be addressed. The results showed that: (1) Compared with other distributed hydrological models, the hydrological model in this study has fewer parameters and simpler calculation methods. The model was good at simulating annual surface runoff. (2) The surface runoff was less sensitivity to climate change in the regions above Danjiangkou in Hanjiang River Basin. A 1°C increase in temperature might results in a surface runoff decrease of 2~5% and a 10% precipitation increase might result in a streamflow increase of 14~17%. (3) The temperature across the Fu River Basin were projected to increase by 1.4~2.3°C in 1961 to 1990 compared with that in 1961 to 1990. But the uncertainty existed among the projection results of precipitation. The surface runoff was excepted to decrease by 1.3~23.9% without considering the climate change projected by NorESM1-M and MIROC-ESM-CHEM, which was much different from other GCMs.

DOI: https://doi.org/10.1051/matecconf/201824601099

Year: 2018

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions