Author(s): Yaxiong Shen; Colin Whittaker; Mark Dickson
Linked Author(s): Colin Whittaker, Yaxiong Shen
Keywords: Wave impacts; Cliff erosion; Field data analysis; Physical modelling
Abstract: Rock coasts occupy over 50% of the global shoreline and many sandy beaches are underlain by coastal platforms and rocky cliffs. The problem of wave-driven cliff erosion is of great societal importance, with many coastal communities located on top of cliffs that are at risk from erosion. Continuing global mean sea level rise and changes in storminess are generally expected to exacerbate the erosion of coastlines (Hurst et al., 2016), as larger waves can reach the cliff toe without breaking offshore. However, the science underpinning wave-induced cliff erosion is still at a relatively early stage. Even the relative contributions of waves to cliff erosion, which include hydraulic forces, impulse pressures and abrasion, are not well resolved. Most insights into wave impacts on cliffs come from field observations of coastal ground motion during storm events (e. g. Young et al., 2011, Huppert et al., 2020). These field investigations demonstrate the dependence of large wave impacts on both water levels and wave conditions, and in some cases the correlation of periods of large ground motion with increased erosion (Earlie et al., 2015). Unsurprisingly, although large impacts generally occur at high tide during storms characterised by large significant wave heights, the largest impacts occur when tidal levels and storm surge combine to provide water levels that are conducive to the incident waves breaking on the cliffs (Thompson et al., 2019; 2022). Larger wave heights or shallower water levels tend to lead to breaking further offshore, with a broken wave interacting with the cliff, while smaller wave heights or deeper water levels may preclude strong wave breaking on the cliffs.
DOI: https://doi.org/10.59490/coastlab.2024.769
Year: 2024