Author(s): Meilan Qi; Jinzhao Li; Qigang Chen; Qunfeng Zhang
Linked Author(s): Meilan Qi, Qigang Chen
Keywords: Bed roughness; open channel flow turbulence; particle image velocimetry (PIV); RANS models; turbulence simulation and modelling
Abstract: Accurate modelling of near-wall turbulence influenced by roughness is crucial in hydraulic engineering. This study presents modifications on the k-ϵ turbulence model for open-channel flows over rough bed based on reliable particle image velocimetry data. Experiments have been conducted for different roughness heights. Some near-wall turbulence characteristics (e.g. bursting events) are identified and the profiles of mean streamwise velocity, Reynolds shear stress and turbulence intensities are validated with direct numerical simulation data. Experimental results confirm that the coefficient cμ involved in the k-ϵ model varies with roughness Reynolds number in outer region, and with both and y+ (normalized distance from the wall) in near-wall region. A new damping function is reconstructed, and the profile of turbulent kinetic energy close to the wall is analytically obtained. The present modifications accounting for wall roughness effects are further implemented into the k-ϵ model and validation shows that the prediction accuracy for the near-wall flow has been improved.
DOI: https://doi.org/10.1080/00221686.2017.1399931
Year: 2018