Author(s): Christian Koch; Hubert Chanson
Linked Author(s):
Keywords: Acoustic Doppler velocimetry; bores; physical modelling; positive surge; turbulence; turbulent velocity measurements
Abstract: A positive surge results from a sudden change in flow that increases the flow depth. New experiments were conducted in a large channel. Most positive surge tests were conducted with a horizontal bed slope, a constant flow rate and uncontrolled flow conditions. The only dependant variable was the downstream gate opening after closure. Detailed turbulence measurements were performed with high-temporal resolution using side-looking acoustic Doppler velocimetry. Two types of positive surge were observed: undular surge for Froude numbers less than 1.7, and weak (breaking) surges above. Instantaneous velocity measurements beneath advancing surges showed a marked effect of the surge passage on the velocity field. Streamwise velocities showed rapid flow deceleration at all vertical elevations. Large fluctuations of longitudinal and transverse velocities were recorded beneath the surges, including some unsteady flow recirculation beneath a weak surge front. Turbulent stresses were deduced from high-pass filtered data. The results showed large normal and tangential Reynolds stresses beneath the surges. A comparison between undular and weak surges suggested some major difference. In weak surge flows, the data showed rapid flow separation beneath the surge front. In undular surges, maximum Reynolds stresses were observed beneath and just before each wave crest behind the leading wave.
DOI: https://doi.org/10.3826/jhr.2009.2954
Year: 2009