DONATE

IAHR Document Library


« Back to Library Homepage « Journal of Hydraulic Research 2001 Issue 5

The applications of the enhanced CCHE2D model to study the alluvial channel migration processes

Author(s): Jennifer G. Duan; Sam S. Y. Wang; Yafei Jia

Linked Author(s):

Keywords:

Abstract: This paper is to report a newly developed numerical-empirical model, the Enhanced CCHE2D (EnCCHE2D), and its application to simulating the alluvial channel migration phenomena. EnCCHE2D model is capable of predicting quasi-three-dimensional (3D) flow field and shear stress distribution on the bed, because a set of empirical functions of 3D flow characteristics formulated by results of a 3D model, CCHE3D, was integrated with CCHE2D, a depth-averaged hydrodynamic model, the predecessor of EnCCHE2D. The processes of sediment transport and meander migration were predicted based on these quasi-3D flow solutions. The advance or retreat of bank is calculated by considering not only the hydraulic erosion of bank surface and toe, but also the mass balance of sediment flux in the near-bank zone. As a result, the simulation of bank erosion, bar/pool formation and shifting, bank advance and retreat, channel widening and migration and meander evolution phenomena agree well with the available measurements of physical experiments.

DOI: https://doi.org/10.1080/00221686.2001.9628272

Year: 2001

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions