DONATE

IAHR Document Library


« Back to Library Homepage « Journal of Hydraulic Research 1996 Issue 3

Discharge prediction in straight compound channels using the mixing length concept

Author(s): M.F. Lambert; R.H.J. Sellin

Linked Author(s):

Keywords:

Abstract: A method for predicting the depth-discharge relationship in a compound channel is developed and applied to two different sets of experimental results. The method uses a mixing length formulation to account for the turbulent interaction between the main channel and the floodplain and the resulting momentum exchange. This momentum transfer tends to reduce the discharge in the main channel and increase the discharge on the floodplain. The net effect is a reduction in the overall discharge capacity of the compound channel. As a result, practical methods which can allow for the interaction effect are needed. In this formulation a variation of Prandtl's mixing length hypothesis is applied to calculate the apparent shear stresses, indicative of the turbulent interaction, on the sides of small vertical elements which comprise the compound channel cross-section. The approach suggested is to use the mixing length approximation to calculate the correction for the momentum interaction effects that are neglected when the traditional divided channel approach is used. The traditional divided channel approach referred to herein typically divides the compound channel into three large sub-areas: main channel, left floodplain and right floodplain using a vertical division at the edges of the main channel.

DOI: https://doi.org/10.1080/00221689609498487

Year: 1996

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions